Publications

Published on

Life as we know it is apparently built out of things called GTA, and C.

As far as I can tell, G stands for GeometryT for TopologyA for Algebra, and C for Combinatorics. The biologists apparently haven’t yet discovered P, which stands for Probability. Anyway I’m using this color coding to try to indicate what each of the following papers contains.

I. Research papers. (See table II. below for expository and other papers.)

G T A C P Sums of twisted circulants
with Henry LandauZeph Landau, and Jamie Pommersheim
Submitted for publication.
G T A C P Group trisections and smooth 4-manifolds
with David Gay and Rob Kirby
Geometry & Topology, 22:3 (2018), pp. 1537-1546.
G T A C P Fixed-energy harmonic functions
with Rick Kenyon
Discrete Analysis 2017:18, 21 pages.
G T A C P Homological and homotopical Dehn functions are different
with Noel Brady, Pallavi Dani, and Robert Young
Proceedings of the National Academy of Sciences, vol. 110 no. 48 (Nov. 26, 2013), pp. 19206-19212.
G T A C P Spaces of polygonal triangulations and Monsky polynomials
with Jamie Pommersheim
Discrete and Computational Geometry, 51:132 (2014). DOI:10.1007/s00454-013-9553-6
G T A C P A central limit theorem for repeating patterns
with Eric Babson, Henry Landau, Zeph Landau, and Jamie Pommersheim
arxiv:1204.2872
G T A C P Dull cut off for circulants
with Eric Babson, Henry Landau, Zeph Landau, and Jamie PommersheimSubmitted for publication.
G T A C P Discretized configurations and partial partitions
with David Gay and Valerie Hower
Proceedings of the American Mathematical Society, vol. 141 (2013), pp. 1093-1104.
G T A C P Pushing fillings in right-angled Artin groups
with Noel Brady, Pallavi Dani, Moon Duchin, and Robert Young
Journal of the London Mathematical Society, vol. 87 no. 3 (2013), pp. 663-688.
G T A C P Distributions of order pattern of interval maps
with Eric Babson, Henry Landau, Zeph Landau, and Jamie Pommersheim
Combinatorics, Probability, & Computing, vol. 22 no. 1 (2013), pp. 319-341.
G T A C P Filling loops at infinity in the mapping class group
with Noel Brady, Pallavi Dani, Moon Duchin, and Robert Young
Michigan Mathematics Journal, vol. 61 no. 4 (2012), pp. 867-874.
G T A C P Optimal estimators for threshold-based quality measures
with Sandy Ganzell, Henry Landau, Zeph Landau, Jamie Pommersheim, and Eric Zaslow
Journal of Probability and Statistics, vol. 2010 (2010), Article ID 752750.
G T A C P The number of possibilities for random dating
with Rod Canfield and Andrew Granville
Journal of Combinatorial Theory, Series A, vol. 115 (2008), pp. 1265-1271.
G T A C P Random multiplication approaches uniform measure in finite groups
with Henry Landau, Zeph Landau, Jamie Pommersheim, and Eric Zaslow
Journal of Theoretical Probability, vol. 20 no. 1 (2007), pp. 107-118.
G T A C P Distances of Heegaard splittings
with Saul Schleimer
Geometry & Topology, vol. 9 (2005), pp. 95-119.
G T A C P State complexes for metamorphic robots
with Rob Ghrist
International Journal of Robotics Research,, vol. 23 no. 7-8 (July 2004), pp. 809-824.
G T A C P Circles minimize most knot energies
with Jason Cantarella, Joe Fu, Mohammad Ghomi, and Ralph Howard
Topology, vol. 42, no. 2 (2002), pp. 381-394.
G T A C P Configuration spaces of colored graphs
Geometriae Dedicata, vol. 92 (2002), pp. 185-194.
G T A C P Evasive random walks and the clairvoyant demon
with Henry Landau, Zeph Landau, Jamie Pommersheim, and Eric Zaslow
Random Structures & Algorithms, vol. 20, no. 2 (2002), pp. 239-248.
G T A C P An iterated random function with Lipschitz number one
with Henry Landau, Zeph Landau, Jamie Pommersheim, and Eric Zaslow
Theory of Probability and Its Applications, vol. 47, no. 2 (2002), pp. 286-300.
G T A C P Yet another species of forbidden-distances chromatic number with Pete Johnson, Jr.
Geombinatorics, vol. 10, no. 3 (2001), pp. 89-95.
G T A C P Configuration spaces and braid groups of graphs
(Postscript file)
Ph.D. thesis, UC Berkeley (2000).
G T A C P The kth upper chromatic number of the line
Discrete Mathematics, vol. 169 (1997), pp. 157-162.
G T A C P The probability that (a,b)=1 with Matteo Paris
College Mathematics Journal, vol. 23, no. 1 (1992), pg. 47.

II. Expository articles, announcements, etc.

G T A C P Braids,
a chapter in the book Office Hours with a Geometric Group Theorist,
eds. Matt Clay and Dan Margalit (Princeton University Press, 2017)
G T A C P Finding good bets in the lottery, and why you shouldn’t take them
with Skip Garibaldi
American Mathematical Monthly, vol. 117 no. 1 (2010), pp. 3-26.
G T A C P Why not buy lottery tickets?
(A non-technical, locally published version of above. A .doc file.) with Skip Garibaldi
The Academic Exchange, vol. 10 no. 4 (2008), pp. 10-11.
G T A C P A million-dollar proof
The Mathematical Intelligencer, vol. 29 no. 4 (2007), pg. 8.
G T A C P Finding topology in a factory: configuration spaces
with Rob Ghrist
American Mathematical Monthly, vol. 109, no. 2 (2002), pp. 140-150.
G T A C P Upper chromatic numbers: an update
Geombinatorics, vol. 10, no. 1 (2000), pp. 4-11.
G T A C P Evasive random walks
In Paul Erdös and his Mathematics, Budapest, Hungary, July 1999.